Journal Archive

The Korean Journal of Cognitve & Biological Psychology - Vol. 31 , No. 2

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 31, No. 2, pp. 67-80
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Apr 2019
Received 28 Feb 2019 Revised 31 Mar 2019 Accepted 31 Mar 2019
DOI: https://doi.org/10.22172/cogbio.2019.31.2.001

사회적 고립과 추적 스트레스를 이용한 복합 스트레스가 청소년기와 성체기 쥐에게 미치는 장기적 효과
이지혜1 ; 최준식1,
1고려대학교 심리학과

Differential Effects of Combined Stress during Adolescence and Adulthood on Anxiety-related Behaviors in Rats
Ji-Hye Lee1 ; June-Seek Choi1,
1Department of Psychology, Korea University
Correspondence to : 최준식, 고려대학교 심리학과, (02841) 서울특별시 성북구 안암동 안암로 145 E-mail: j-schoi@korea.ac.kr


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

본 연구는 사회적 고립과 추적 스트레스를 이용한 복합 스트레스 모델이 청소년기와 성체기 쥐에게 미치는 장기적 효과를 알아보고자 하였다. 이를 위해 청소년기(생후 5주)와 성체기(생후 8주)의 쥐들은 추적 스트레스 3일 전부터 사회적 고립 처치를 받았으며 각 발달주기 집단은 사회적 고립(social isolation, SI)집단 혹은 사회적 고립과 추적 스트레스(social isolation + chasing stress, SI+C) 집단으로 나뉘었다. 추적 스트레스는 본 연구실에서 새롭게 개발된 스트레스 모델로서, 탈출할 수 없는 원형 트랙에서 빠르게 접근해오는 로봇에게 쫓기는 경험이다. 하루에 20시행씩 총 3일간 SI 집단은 소리자극의 제시를 받았으며 SI+C 집단은 소리자극의 제시와 추적 스트레스를 함께 받았다. 그리고 추적 스트레스 경험으로부터 3주 후에 행동 검사가 실시되었다. 행동 검사로는 추적 스트레스 당시 제시되었던 소리자극에 관한 기억 검사와 불안 관련 행동을 측정하는 높은 십자미로 검사가 진행되었다. 또한 새롭게 경험하는 공포 학습의 양상을 보기 위해 전기 쇼크를 이용한 공포 조건화가 진행되었다. 실험 결과, 추적 스트레스 당시 제시되었던 소리자극에 대한 기억 검사에서 청소년기 SI+C 집단은 성체기 SI+C 집단보다 추적 소리자극 자체에 대해서는 낮은 동결반응을 보였지만 추적 소리자극이 제시되지 않는 시행 간 간격 동안에는 성체기 SI+C 집단과 비슷한 수준의 동결반응을 보였다. 높은 십자미로 검사에서는 청소년기 SI+C 집단이 SI 집단보다 높은 불안 수준을 보였지만 성체기는 두 집단 간 차이가 없었다. 또한 공포 조건화에서 성체기 SI+C 집단은 민감화된 공포 반응을 보인데 반해 청소년기 SI+C 집단은 공포 학습의 결함을 보였다. 이러한 결과는 청소년기에 사회적 고립과 추적 스트레스를 이용한 복합 스트레스를 받을 경우 불안 수준의 증가 뿐 아니라 공포 자극에 대한 적절한 반응을 학습하는 것에 결함이 생긴다는 것을 의미한다. 반면 이러한 복합 스트레스의 효과는 성체기 집단에서는 관찰되지 않았다. 따라서 본 연구는 사회적 고립과 추적 스트레스를 이용한 청소년기 복합 스트레스 모델이 청소년기의 불안 장애에 대한 취약성을 반영하는 동물 모델임을 제안하며 본 모델이 청소년기 불안 장애의 뇌 기전을 밝히는 향후 연구에 활용 가능성이 크다는 점을 시사한다.

Abstract

We investigated the long-term effects of combined stress using adolescent and adult rats and determined whether there were differential effects depending developmental periods. The combined stress consisted of social isolation and chasing stress. The adolescent (5-weeks old) and adult (8-weeks old) rats were isolated three days prior to chasing stress. Both groups of the rats were assigned to social isolation (SI) or social isolation + chasing stress (SI+C) treatment. Chasing stress is a novel stress paradigm developed by the authors, in which the rats were chased by a fast-approaching robotic construct in an inescapable donut-shaped maze. Three weeks following the chasing stress, the rats were examined for long-term memory of the chasing tone, anxiety-like behavior, and new fear learning. In the chasing tone test, the adolescent SI+C showed a lower level of freezing in response to the chasing tone itself than the adult SI+C. However, there were no differences in freezing levels during inter-trial intervals. In the elevated plus-maze (EPM) test, the adolescent SI+C exhibited increased anxiety-related behaviors, but the adult SI+C did not. In the fear conditioning using footshock, the adult SI+C showed sensitized responses, whereas the adolescent SI+C showed impairment of new fear learning. In sum, the combined stress experienced during adolescence caused long-term disability in reacting properly to a warning cue as well as increased anxiety-related behavior. On the contrary, these effects were not induced by the same treatment during adulthood. Therefore, we propose that combined stress during adolescence, which consisted of social isolation and chasing stress, could be employed as an animal model of anxiety with consideration of the vulnerability of adolescents to anxiety disorders. Further studies are warranted to prove the utility of the new model and the underlying brain mechanism.


Keywords: Adolescence, Social isolation, Chasing stress, Combined stress, Anxiety, Fear learning, Rat
키워드: 청소년기, 사회적 고립, 추적 스트레스, 복합 스트레스, 불안, 공포학습,

Acknowledgments

본 연구는 2014-2019년 교육부와 한국연구재단(글로벌 박사 양성사업, NRF-2014H1A2A1021401) 및 2015-2019년 과학기술정보통신부와 한국연구재단의 지원(뇌과학원천기술개발사업, NRF-2015M3C7A1031395)을 받아 수행되었음.


References
1. Andersen, S. L., Thompson, A. T., Rutstein, M., Hostetter, J. C., & Teicher, M. H. (2000). Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse, 37(2), 167-169.
2. Avital, A., & Richter-Levin, G. (2005). Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. International Journal of Neuropsychopharmacology, 8(2), 163-173.
3. Berardi, A., Trezza, V., Palmery, M., Trabace, L., Cuomo, V., & Campolongo, P. (2014). An updated animal model capturing both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Frontiers in Behavioral Neuroscience, 8, 142.
4. Bledsoe, A. C., Oliver, K. M., Scholl, J. L., & Forster, G. L. (2011). Anxiety states induced by post-weaning social isolation are mediated by CRF receptors in the dorsal raphe nucleus. Brain Research Bulletin, 85(3-4), 117-122.
5. Brown, G. R., & Spencer, K. A. (2013). Steroid hormones, stress and the adolescent brain: a comparative perspective. Neuroscience, 249, 115-128.
6. Burke, A. R., McCormick, C. M., Pellis, S. M., & Lukkes, J. L. (2017). Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neuroscience & Biobehavioral Reviews, 76, 280-300.
7. Buwalda, B., Geerdink, M., Vidal, J., & Koolhaas, J. M. (2011). Social behavior and social stress in adolescence: a focus on animal models. Neuroscience & Biobehavioral Reviews, 35(8), 1713-1721.
8. Chareyron, L. J., Lavenex, P. B., & Lavenex, P. (2012). Postnatal development of the amygdala: a stereological study in rats. Journal of Comparative Neurology, 520(16), 3745-3763.
9. Dorn, L. D., Dahl, R. E., Woodward, H. R., & Biro, F. (2006). Defining the boundaries of early adolescence: A user's guide to assessing pubertal status and pubertal timing in research with adolescents. Applied Developmental Science, 10(1), 30-56.
10. Einon, D. (1980). Spatial memory and response strategies in rats: age, sex and rearing differences in performance. The Quarterly Journal of Experimental Psychology, 32(3), 473-489.
11. Einon, D. F., & Morgan, M. (1977). A critical period for social isolation in the rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 10(2), 123-132.
12. Esmorís-Arranz, F. J., Méndez, C., & Spear, N. E. (2008). Contextual fear conditioning differs for infant, adolescent, and adult rats. Behavioural Processes, 78(3), 340-350.
13. Ganella, D. E., & Kim, J. H. (2014). Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. British Journal of Pharmacology, 171(20), 4556-4574.
14. Green, M. R., & McCormick, C. M. (2013a). Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance. Behavioural Brain Research, 256, 165-171.
15. Green, M. R., Barnes, B., & McCormick, C. M. (2013b). Social instability stress in adolescence increases anxiety and reduces social interactions in adulthood in male Long-Evans rats. Developmental Psychobiology, 55(8), 849-859.
16. Green, M. R., & McCormick, C. M. (2013). Effects of stressors in adolescence on learning and memory in rodent models. Hormones and Behavior, 64(2), 364-379.
17. Hall-Lande, J. A., Eisenberg, M. E., Christenson, S. L., & Neumark-Sztainer, D. (2007). Social isolation, psychological health, and protective factors in adolescence. Adolescence, 42(166), 265-287.
18. Harris, J. R. (1995). Where is the child's environment? A group socialization theory of development. Psychological Review, 102(3), 458.
19. Hodges, T. E., & McCormick, C. M. (2015). Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Hormones and Behavior, 69, 16-30.
20. Isgor, C., Kabbaj, M., Akil, H., & Watson, S. J. (2004). Delayed effects of chronic variable stress during peripubertal juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus, 14(5), 636-648.
21. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593-602.
22. Laviola, G., Macrı̀, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19-31.
23. Lee, F. S., Heimer, H., Giedd, J. N., Lein, E. S., Šestan, N., Weinberger, D. R., & Casey, B. (2014). Adolescent mental health-opportunity and obligation. Science, 346(6209), 547-549.
24. Lee, J.-H., Kimm, S., Han, J.-S., & Choi, J.-S. (2018). Chasing as a model of psychogenic stress: characterization of physiological and behavioral responses. Stress, 21(4), 323-332.
25. Lukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and Behavior, 55(1), 248-256.
26. Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 88(2), 261-274.
27. McCormick, C. M., & Mathews, I. Z. (2007). HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacology Biochemistry and Behavior, 86(2), 220-233.
28. McCormick, C. M., Mathews, I. Z., Thomas, C., & Waters, P. (2010). Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain and Cognition, 72(1), 73-85.
29. McCormick, C. M., Nixon, F., Thomas, C., Lowie, B., & Dyck, J. (2010). Hippocampal cell proliferation and spatial memory performance after social instability stress in adolescence in female rats. Behavioural Brain Research, 208(1), 23-29.
30. Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60-68.
31. Pellis, S. M., & Pellis, V. C. (2007). Rough-and-tumble play and the development of the social brain. Current Directions in Psychological Science, 16(2), 95-98.
32. Pohl, J., Olmstead, M. C., Wynne-Edwards, K. E., Harkness, K., & Menard, J. L. (2007). Repeated exposure to stress across the childhood-adolescent period alters rats' anxiety-and depression-like behaviors in adulthood: The importance of stressor type and gender. Behavioral Neuroscience, 121(3), 462.
33. Primus, R. J., & Kellogg, C. K. (1989). Pubertal‐related changes influence the development of environment‐related social interaction in the male rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 22(6), 633-643.
34. Romeo, R. D., Patel, R., Pham, L., & So, V. M. (2016). Adolescence and the ontogeny of the hormonal stress response in male and female rats and mice. Neuroscience & Biobehavioral Reviews, 70, 206-216.
35. Rubin, K. H., & Mills, R. S. (1988). The many faces of social isolation in childhood. Journal of Consulting and Clinical Psychology, 56(6), 916.
36. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417-463.
37. Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 87-97.
38. Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 69-74.
39. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28(1), 78-106.
40. Toledo-Rodriguez, M., & Sandi, C. (2007). Stress before puberty exerts a sex-and age-related impact on auditory and contextual fear conditioning in the rat. Neural Plasticity, 2007.
41. Toth, E., Avital, A., Leshem, M., Richter-Levin, G., & Braun, K. (2008). Neonatal and juvenile stress induces changes in adult social behavior without affecting cognitive function. Behavioural Brain Research, 190(1), 135-139.
42. Trimpop, R. M., Kerr, J. H., & Kirkcaldy, B. (1998). Comparing personality constructs of risk-taking behavior. Personality and Individual Differences, 26(2), 237-254.
43. Tsoory, M., Cohen, H., & Richter-Levin, G. (2007). Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. European Neuropsychopharmacology, 17(4), 245-256.
44. Van den Berg, C. L., Hol, T., Van Ree, J. M., Spruijt, B. M., Everts, H., & Koolhaas, J. M. (1999). Play is indispensable for an adequate development of coping with social challenges in the rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 34(2), 129-138.
45. Vanderschuren, L. J., Achterberg, E. M., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70, 86-105.
46. Vidal, J., de Bie, J., Granneman, R. A., Wallinga, A. E., Koolhaas, J. M., & Buwalda, B. (2007). Social stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity. Physiology & Behavior, 92(5), 824-830.
47. Weintraub, A., Singaravelu, J., & Bhatnagar, S. (2010). Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Research, 1343, 83-92.
48. Weiss, I. C., Pryce, C. R., Jongen-Rêlo, A. L., Nanz-Bahr, N. I., & Feldon, J. (2004). Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behavioural Brain Research, 152(2), 279-295.
49. Zurita, A., Martijena, I., Cuadra, G., Brandao, M. L., & Molina, V. (2000). Early exposure to chronic variable stress facilitates the occurrence of anhedonia and enhanced emotional reactions to novel stressors: reversal by naltrexone pretreatment. Behavioral Brain Research, 117(1-2), 163-171.