Journal Archive

The Korean Journal of Cognitve & Biological Psychology - Vol. 31 , No. 1

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 31, No. 1, pp.53-66
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 31 Jan 2019
Received 09 Jul 2018 Revised 28 Jan 2019 Accepted 29 Jan 2019
DOI: https://doi.org/10.22172/cogbio.2019.31.1.004

확률 단서 효과의 속성과 발생 기제
홍인재1, 2 ; 정수근1,
1한국뇌연구원 뇌신경망연구부
2연세대학교 심리학과

The properties and mechanism of probability cueing effect
Injae Hong1, 2 ; Su Keun Jeong1,
1Department of Structure & Function of Neural network, Korea Brain Research Institute
2Department of Psychology, Yonsei University
Correspondence to : 정수근, 연세대학교 심리학과, (41068) 대구광역시 동구 첨단로 61 E-mail: skjeong@kbri.re.kr


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

독립적으로 발생한 사건들을 경험적으로 누적하여 하나의 규칙성을 발견하고, 이를 이용해 자극 출현 확률이 높은 공간으로 공간 주의의 편향이 유발되는 것을 확률 단서 효과(probability cueing effect)라 한다. 확률 단서 학습은 다수의 사건들로부터 통계적 규칙성을 암묵적으로 추론해낸다는 점에서 인간의 효율적인 정보 통합 능력을 보여준다. 확률 단서 학습은 기존의 상향 및 하향적 주의 모델로 설명되지 않는 습관성 주의의 증거를 제시한다는 점에서 중요성이 크지만 확률 단서 효과의 발생 기제에 관한 연구는 아직까지 미비한 실정이다. 본 개관 논문에서는 선행 연구들을 통해 확률 단서 효과의 속성을 살펴보았다. 또한, 확률 단서 학습이 발생하는 과정에 대한 기존의 모델과 수정된 모델을 제안하고, 이를 검증하기 위한 신경학적 연구의 방향성을 논의하였다.

Abstract

Probability cueing effect refers to a spatial bias to a certain region where a target is frequently presented. It is thought to be one of the representative forms of incidental learning that shows the efficiency of human visual system. The probability cueing paradigm provides evidence for habitual attention, which cannot be explained by the top-down and bottom-up attention dichotomy. In the current review article, we examined the key properties of the probability cueing effect and suggested a simple model of probability learning. In addition, we propose a possible direction of neuroimaging studies to test the suggested model and to explore the neural mechanisms of probability cueing effect.


Keywords: probability cueing effect, visual search, statistical learning
키워드: 확률 단서 효과, 시각 탐색, 통계학습, 개관

Acknowledgments

본 연구는 과학기술정보통신부의 재원으로 한국뇌연구원 기관고유사업의 지원을 받아 수행된 연구임 (19-BR-01-06 & IBS-R001-D1-2018-b01).


References
1. Addleman, D. A., Tao, J., Remington, R. W., & Jiang, Y. V. (2017). Explicit goal-driven attention, unlike implicitly learned attention, spreads to secondary tasks. Journal of Experimental Psychology: Human Perception and Performance, 44, 356- 366.
2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437-443.
3. Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34, 210-224.
4. Basso, M. A., & Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. The Journal of Neuroscience, The Journal of Neuroscience, 7519-7534.
5. Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1-21.
6. Brascamp, J. W., Pels, E., & Kristjánsson, Á. (2011). Priming of pop-out on multiple time scales during visual search.  Vision Research51, 1972-1978.
7. Chua, K.-W., & Gauthier, I. (2016). Category-specific learned attentional bias to object parts. Attention, Perception, and Psychophysics, 78, 44-51.
8. Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4, 170-178.
9. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28-71.
10. Chun, M. M., & Jiang, Y. (1999). Top-Down Attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360-365.
11. Cosman, J. D., & Vecera, S. P. (2014). Establishment of an attentional set via statistical learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1-6.
12. Crump, M. J. C., Gong, Z., & Milliken, B. (2006). The context-specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin and Review, 13, 316-321.
13. Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 22-36.
14. Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157-163.
15. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072-3077.
16. Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4(August), 1-10.
17. Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course.  Annual Review of PsychologyAnnual Review of Psychology, 269-297.
18. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in Cognitive Sciences, 10, 382-390.
19. Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67-95.
20. Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 458-467.
21. Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13, 520-525.
22. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252-1268.
23. Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195.
24. Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2007). Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learning and Memory, 14, 548-553.
25. Han, S. H., & Kim, M.-S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628.
26. Hong, I., Jeong, S.-K., & Kim, M.-S. (2018). Task relevance affects the context-dependency of implicit learning. Journal of Vision, 18.
27. Hübner, R., & Mishra, S. (2016). Location-specific attentional control is also possible in the Simon task. Psychonomic Bulletin and Review, 23, 1867-1872.
28. Ji, E. & Kim, M.-S. (2017). Unconscious endogenous attention. The Korean Journal of Cognitive and Biological Psychology, 29, 21-40.
29. Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology, 54A, 1105-1124.
30. Jiang, Y. V. (2017). Habitual versus goal-driven attention. Cortex, 102, 107-120.
31. Jiang, Y. V., Koutstaal, W., & Twedell, E. L. (2016). Habitual attention in older and young adults. Psychology and Aging, 31, 970-980.
32. Jiang, Y. V., & Swallow, K. M. (2014). Changing viewer perspectives reveals constraints to implicit visual statistical learning. Journal of Vision, 14, 1-16.
33. Jiang, Y. V., Swallow, K. M., & Capistrano, C. G. (2013). Visual search and location probability learning from variable perspectives. Journal of Vision, 13, 1-13.
34. Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance, 39, 285-297.
35. Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39, 87- 99.
36. Jiang, Y. V., Swallow, K. M., Won, B.-Y., Cistera, J. D., & Rosenbaum, G. M. (2015). Task specificity of attention training: the case of probability cuing. 39, 77, 50-66.
37. Jiang, Y. V., Won, B.-Y., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1161- 1173.
38. Jiang, Y. V., Won, B.-Y., Swallow, K. M., & Mussack, D. M. (2014). Spatial reference frame of attention in a large outdoor environment. Journal of Experimental Psychology: Human Perception and Performance, 40, 1346-1357.
39. Jonides, J. (1980). Towards a model of the mind's eye's movement. Canadian Journal of Psychology34, 103-112. http://doi.org/10.1037/h0081031.
40. Kabata, T., & Matsumoto, E. (2012). Cueing effects of target location probability and repetition. Vision Research, 73, 23-29.
41. Katyal, S., Zughni, S., Greene, C., & Ress, D. (2010). Topography of covert visual attention in human superior colliculus. Journal of Neurophysiology, 104, 3074-3083.
42. Krauzlis, R. J., Lovejoy, L. P., & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165-182.
43. Kruijne, W., & Meeter, M. (2015). The long and the short of priming in visual search. Attention, Perception, and Psychophysics, 77, 1558-1573.
44. Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin and Review, 23, 1873-1881.
45. Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian Cognitive Modeling: A Practical Course. New York: Cambridge University Press.
46. Li, C.-L., Aivar, M. P., Tong, M. H., & Hayhoe, M. M. (2018). Memory shapes visual search strategies in large-scale environments. Scientific Reports, 8, 4324.
47. Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49, 2616-2627.
48. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception and Psychophysics, 58, 977-991.
49. Manelis, A., & Reder, L. M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning and Memory, 19, 527-534.
50. Montefinese, M., Sulpizio, V., Galati, G., & Committeri, G. (2015). Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research, 79, 687-697.
51. Oh, S. H., & Kim, M.-S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin and Review, 11, 275-281.
52. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.
53. Reber, P. J. (2013). The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042.
54. Salovich, N. A., Remington, R. W., & Jiang, Y. V. (2018). Acquisition of habitual visual attention and transfer to related tasks. Psychonomic Bulletin and Review, 25, 1052- 1058.
55. Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473- 500.
56. Schwark, J., & Dolgov, I. (2013). The influence of spatial and feature probability cuing in visual search. Perception, 42, 470-472.
57. Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10, 38-45.
58. Serences, J. T., & Yantis, S. (2007). Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex, 17, 284-293.
59. Shaqiri, A., & Anderson, B. (2012). Spatial probability cuing and right hemisphere damage. Brain and Cognition, 80, 352-360.
60. Shaqiri, A., & Anderson, B. (2013). Priming and statistical learning in right brain damaged patients. Neuropsychologia, 51, 2526-2533.
61. Sisk, C. A., Twedell, E. L., Koutstaal, W., Cooper, S. E., & Jiang, Y. V. (2018). Implicitly-learned spatial attention is unimpaired in patients with Parkinson's disease. Neuropsychologia, 119, 34-44.
62. Smith, A. D., Hood, B. M., & Gilchrist, I. D. (2010). Probabilistic cuing in large-scale environmental search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 605-618.
63. Smith, A. D., Wallace, F., Hood, B., & Gilchrist, I. D. (2009). Mechanisms of large-scale environmental search: Probability cueing depends on the relationship between landmarks and target distribution. Cognitive Processing, 10(Suppl 2), 305- 306.
64. Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23, 429-440.
65. Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin and Review, 11, 65-70.
66. Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 251-262.
67. Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552-564.
68. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934-1945.
69. Twedell, E. L., Koutstaal, W., & Jiang, Y. V. (2017). Aging affects the balance between goal-guided and habitual spatial attention. Psychonomic Bulletin and Review, 24, 1135-1141.
70. Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32, 1294-1301.
71. Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80, 860-870.
72. Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance44, 13-17.
73. Wendt, M., Kluwe, R. H., & Vietze, I. (2008). Location-specific versus hemisphere-specific adaptation of processing selectivity. Psychonomic Bulletin and Review, 15, 135-140.
74. Wolfe, J. M., Alvarez, G. A., & Horowitz, T. S. (2000). Attention is fast but volition is slow. Nature, 406, 691.
75. Won, B.-Y., & Jiang, Y. V. (2015). Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 787-806. http://doi.org/10.1037/xlm0000040.
76. Won, B.-Y., & Leber, A. B. (2016). Search for targets in visual working memory is biased by statistical learning. Journal of Vision, 16, 365.
77. Won, B.-Y., Lee, H. J., & Jiang, Y. V. (2015). Statistical learning modulates the direction of the first head movement in a large-scale search task. Attention, Perception, and Psychophysics, 77, 2229-2239.
78. Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin and Review, 11, 269-274.