Current Issue

The Korean Journal of Cognitve & Biological Psychology - Vol. 34 , No. 2

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 34, No. 2, pp. 99-108
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Apr 2022
Received 16 Nov 2021 Revised 30 Mar 2022 Accepted 30 Mar 2022
DOI: https://doi.org/10.22172/cogbio.2022.34.2.005

중추 및 말초 단서의 타당도가 표적의 탐지 시간 및 단서효과에 미치는 영향
고범준1 ; 박창호1,
1전북대학교 심리학과

Effects of Central and Peripheral Cue Validity on Target Detection and Cueing Effect
BeomJun Koh1 ; ChangHo Park1,
1Department of Psychology, Jeonbuk National University
Correspondence to : 박창호, 전북대학교 심리학과, (54896) 전북 전주시 덕진구 백제대로 567 인문사회관 720호실, E-mail: finnegan@jbnu.ac.kr


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

타당한 단서는 표적의 탐지 시간을 줄이는 효과가 있는데 이를 단서 효과라고 한다. 본 연구는 중추 단서와 말초 단서의 타당도의 수준을 25%, 40%, 55%, 70%, 85%, 및 100%로 변화시켰을 때 표적 탐지의 반응시간을 측정하고, 단서 효과가 타당도 수준에 따라 변화하는 추세를 관찰하였다. 두 단서 조건 모두에서 단서 타당도가 증가할 때 전반적인 반응 시간은 비선형적으로 감소하였으며, 타당도 수준으로 예측되는 것보다 대체로 더 긴 경향이 있었다. 타당도 수준이 증가할 때 타당 시행의 반응시간도 비선형적인 감소 패턴을 보인 반면, 단서 효과는 선형적으로 증가하였다. 추가 분석에서 여섯 개의 타당도 수준은 25%와 40% 구간, 55%에서 85%까지의 구간, 그리고 100% 수준 등 세 개의 타당도 범위로 구별될 수 있는 것처럼 보인다. 종합하여 보았을 때, 타당 시행에서 표적 탐지 수행은 전반적으로 단서 타당도 수준의 변화에 민감하게 대응하지 않으며, 단서 타당도 정보의 활용에는 전략적인 요인이 개입할 가능성이 있는 것으로 보인다.

Abstract

Valid cues have an effect of reducing detection time of targets, which is called cueing effect. This study manipulated validity of central and peripheral cues between 25%, 40%, 55%, 70%, 85%, 100% and measured target detection time. In both of cue conditions overall response time (RT) decreased non-linearly when cue validity increased, and tended to be longer than expected linearly at corresponding validity level. As cue validity increased valid trials also showed similar nonlinear decreasing pattern of RTs, but cueing effect increased linearly. Further analysis indicates that 6 levels of validity could be grouped into three sections: 25% and 40% section, 55% to 85% section, and 100% level. In summary, RTs of valid trials did not match levels of cue validity sensitively, and there might be more strategic factors involved in utilizing cue validity information.


Keywords: attention, detection, spatial cueing, cue validity
키워드: 주의, 탐지, 공간 단서, 단서 타당도

Acknowledgments

본 논문은 제1저자의 석사학위 논문에 기초하며, 2021 한국 인지 및 생물 심리학회 연차학술대회에서 발표되었다. 본 연구는 한국연구재단 4단계 BK21사업(전북대학교 심리학과)의 지원을 받아 수행된 연구이다(No. 4199990714213).


References
1. Adam, J. J., Bovend'Eerdt, T. J., Smulders, F. T., & Van Gerven, P. W. (2014). Strategic flexibility in response preparation: Effects of cue validity on reaction time and pupil dilation. Journal of Cognitive Psychology, 26(2), 166-177.
2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.
3. Botta, F., Santangelo, V., Raffone, A., Lupiáñez, J., & Belardinelli, M. O. (2010). Exogenous and endogenous spatial attention effects on visuospatial working memory. Quarterly Journal of Experimental Psychology, 63(8), 1590-1602.
4. Carlson, T. A., Hogendoorn, H., & Verstraten, F. A. (2006). The speed of visual attention: What time is it? Journal of Vision, 6(12), 1406-1411.
5. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
6. Edwards, W. (1961). Probability learning in 1000 trials. Journal of Experimental Psychology, 62(4), 385-394.
7. Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583-597.
8. Gaschler, R., Schwager, S., Umbach, V. J., Frensch, P. A., & Schubert, T. (2014). Expectation mismatch: Differences between self-generated and cue-induced expectations. Neuroscience & Biobehavioral Reviews, 46, 139-157.
9. Giordano, A. M., McElree, B., & Carrasco, M. (2009). On the automaticity and flexibility of covert attention: A speed-accuracy trade-off analysis. Journal of Vision, 9(3): 30, 1-30.
10. Girardi, G., Antonucci, G., & Nico, D. (2013). Cueing spatial attention through timing and probability. Cortex, 49(1), 211-221.
11. Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (2015). The effects of increasing target prevalence on information processing during visual search. Psychonomic Bulletin & Review, 22(2), 469-475.
12. Handy, T. C., Kingstone, A., & Mangun, G. R. (1996). Spatial distribution of visual attention: Perceptual sensitivity and response latency. Perception & Psychophysics 58(4), 613-627.
13. Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517-523.
14. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360–365.
15. Ivanoff, J., & Klein, R. M. (2004). Stimulus-response probability and inhibition of return. Psychonomic Bulletin & Review, 11(3), 542-550.
16. Jonides, J. (1980). Towards a model of the mind's eye's movement. Canadian Journal of Psychology, 34(2), 103-112.
17. Jonides, J. (1981). Voluntary versus automatic control over the mind's eye movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and Performance IX (pp. 187-203). Hillsdale, NJ: Erlbaum.
18. Kuhns, A. B., Dombert, P. L., Mengotti, P., Fink, G. R., & Vossel, S. (2017). Spatial attention, motor intention, and Bayesian cue predictability in the human brain. Journal of Neuroscience, 37(21), 5334-5344.
19. Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press.
20. Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of visual–spatial attention: Resource allocation or uncertainty reduction? Journal of Experimental Psychology: Human Perception and Performance, 22(3), 725–737.
21. Mack, A., & Rock, I. (1998). Inattentional Blindness. MIT press.
22. Moresi, S., Adam, J. J., Rijcken, J., & Van Gerven, P. W. (2008). Cue validity effects in response preparation: A pupillometric study. Brain Research, 1196, 94-102.
23. Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299-309.
24. Müller, H. J., & Findlay, J. M. (1988). The effect of visual attention of peripheral discrimination thresholds in single and multiple element displays. Acta Psychologica, 69(2), 129-155.
25. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315-330.
26. Park, H.-B., Son, H.-G., & Hyun, J.-S. (2015). Characterizing Information Processing in Visual Search According to Probability of Target Prevalence. Korean Journal of Cognitive Science, 26(3), 357-375.
27. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes (pp. 531-556).
28. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160-174.
29. Possamai, C. A. (1986). Relationship between inhibition and facilitation following a visual cue. Acta Psychologica, 61(3), 243-258.
30. Riggio, L., & Kirsner, K. (1997). The relationship between central cues and peripheral cues in covert visual orientation. Perception & Psychophysics, 59(6), 885-899.
31. Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception and Performance, 3(2), 201-211.
32. Simons, D. J., & Ambinder, M. S. (2005). Change blindness: Theory and consequences. Current Directions in Psychological Science, 14(1), 44-48.
33. Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Attention, Perception, & Psychophysics, 81(8), 2571-2589.
34. Terry, K. M., Valdes, L. A., & Neill, W. T. (1994). Does “inhibition of return” occur in discrimination tasks? Perception & Psychophysics, 55(3), 279–286.
35. Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., Friston, K. J., & Stephan, K. E. (2014). Spatial attention, precision, and Bayesian inference: A study of saccadic response speed. Cerebral Cortex, 24(6), 1436-1450.
36. Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2017). 공학심리와 인간수행. (곽호완 등 역) 서울: 시그마프레스. [원저명: Engineering psychology and human performance]
37. Wright, R. D., & Richard, C. M. (2000). Location cue validity affects inhibition of return of visual processing. Vision Research, 40(17), 2351-2358.
38. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623-638.
39. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121-134.