Current Issue

The Korean Journal of Cognitve & Biological Psychology - Vol. 34 , No. 2

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 34, No. 2, pp. 83-98
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Apr 2022
Received 19 Oct 2021 Revised 05 Feb 2022 Accepted 14 Feb 2022
DOI: https://doi.org/10.22172/cogbio.2022.34.2.004

재응고를 통한 일화기억 갱신에서 예측오류의 비선형적 효과
김태훈1 ; 이도준1,
1연세대학교 심리학과

Nonlinear Effect of Prediction Error on Reconsolidation-based Episodic Memory Updating
Taehoon Kim1 ; Do-Joon Yi1,
1Department of Psychology, Yonsei University
Correspondence to : 이도준, 연세대학교 심리학과, (03722) 서울 서대문구 연세로 50, E-mail: dojoon.yi@yonsei.ac.kr


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

재활성화된 기억은 일시적으로 불안정해지고 새로 경험된 내용을 반영하여 변하기 쉬운 상태가 된다. 최근 연구들은 이러한 기억갱신이 시작되려면 기억이 불완전하게 인출되어 예측오류가 유발되어야 한다는 증거를 제공하였다. 그러나 기억갱신과 예측오류의 관계는 아직 분명하지 않다. 이에 본 연구는 3일간의 물체 학습 절차를 통해 예측오류 크기에 따른 기억갱신의 변화를 관찰하였다. 참가자들은 첫째 날에 물체 목록을 학습하고, 둘째 날에 새로운 목록을 학습하였다. 실험집단은 두 번째 목록을 학습하기 전에 이전 학습에 관한 단서를 제시받았다. 이때, 하위목록마다 서로 다른 크기의 예측오류가 발생하도록 단서의 양을 조작하였다. 그 결과, 셋째 날의 출처기억 검사에서 실험집단은 두 번째 목록을 첫째 날에 학습했다고 오귀인하는 실수를 자주 범했으며, 그 정도는 예측오류 크기가 중간 수준일 때 가장 두드러졌다. 그에 비해, 첫 번째 목록에 관한 기억은 예측오류 크기의 영향을 받지 않았다. 또한, 두 번째 목록 학습 후 리마인더를 제공받은 통제집단에서도 재응고의 증거를 찾을 수 없었다. 이러한 결과는 예측오류가 적정한 수준일 때에만 기억갱신이 일어나고, 예측오류가 클 때는 기억이 수정되기보다 새로운 기억이 형성된다는 것을 뜻한다. 결론적으로 본 연구는 예측오류가 기억갱신의 필요조건이지만 충분조건은 아니라는 점을 시사한다.

Abstract

The reactivation of memories can transiently render them vulnerable to and updated with newly learned information. Recent evidence implicates prediction error as necessary to trigger such reconsolidation processes. However, it is unknown how the prediction error level relates to memory updating. Using a 3-day object learning paradigm, we tested the updating of memories as a function of prediction error during reactivation. On Day 1, participants learned the first list of objects divided into a few subsets. On Day 2, the experimental group was reminded of the first list and then learned the second list while the control group went through reverse order. Notably, when the memories of the first list were reactivated, different levels of prediction error occurred for the subsets. On Day 3, the experimental group was more likely to misattribute the source of objects from the second list as being from the first list, the extent of which was prominent with a moderate level of prediction error. No such pattern was observed for the control group. These results indicate that only a moderate prediction error is required for memory updating and that a new memory may be formed when there is too much prediction error. The current study suggests that prediction error is a necessary but not sufficient condition for memory updating.


Keywords: episodic memory, reconsolidation, memory updating, prediction error
키워드: 일화기억, 재응고, 기억갱신, 예측오류

Acknowledgments

본 연구는 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행되었음(NRF-2017R1D1A1B03028539).


References
1. Alberini, C. M., & LeDoux, J. E. (2013). Memory reconsolidation. Current Biology, 23(17), R746-R750.
2. Anderson, M. C., Bjork, E. L., & Bjork, R. A. (2000). Retrieval-induced forgetting: evidence for a recall-specific mechanism. Psychonomic Bulletin & Review, 7(3), 522-530.
3. Biedenkapp, J. C., & Rudy, J. W. (2004). Context memories and reactivation: constraints on the reconsolidation hypothesis. Behavioral Neuroscience, 118(5), 956-964.
4. Bos, M. G. N., Beckers, T., & Kindt, M. (2014). Noradrenergic blockade of memory reconsolidation: a failure to reduce conditioned fear responding. Frontiers in Behavioral Neuroscience, 8, 412.
5. Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325-14329.
6. Braem, S., Coenen, E., Bombeke, K., van Bochove, M. E., & Notebaert, W. (2015). Open your eyes for prediction errors. Cognitive, Affective & Behavioral Neuroscience, 15(2), 374-380.
7. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436.
8. Bramão, I., & Johansson, M. (2017). Benefits and Costs of Context Reinstatement in Episodic Memory: An ERP Study. Journal of Cognitive Neuroscience, 29(1), 52-64.
9. Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience, 2(1), 51-61.
10. Dayan, P., & Hinton, G. E. (1996). Varieties of Helmholtz Machine. Neural Networks, 9(8), 1385-1403.
11. Detre, G. J., Natarajan, A., Gershman, S. J., & Norman, K. A. (2013). Moderate levels of activation lead to forgetting in the think/no-think paradigm. Neuropsychologia, 51(12), 2371-2388.
12. Dudai, Y., & Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron, 44(1), 93-100.
13. Duncan, K., Ketz, N., Inati, S. J., & Davachi, L. (2012). Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus, 22(3), 389-398.
14. Eisenberg, M., Kobilo, T., Berman, D. E., & Dudai, Y. (2003). Stability of retrieved memory: inverse correlation with trace dominance. Science, 301(5636), 1102-1104.
15. Exton-McGuinness, M. T. J., Lee, J. L. C., & Reichelt, A. C. (2015). Updating memories-The role of prediction errors in memory reconsolidation. Behavioural Brain Research, 278, 375-384.
16. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
17. Fernández, R. S., Boccia, M. M., & Pedreira, M. E. (2016). The fate of memory: Reconsolidation and the case of Prediction Error. Neuroscience and Biobehavioral Reviews, 68, 423-441.
18. Forcato, C., Bavassi, L., De Pino, G., Fernández, R. S., Villarreal, M. F., & Pedreira, M. E. (2016). Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process. PLoS ONE, 11(3), e0151381.
19. Forcato, C., Rodríguez, M. L. C., Pedreira, M. E., & Maldonado, H. (2010). Reconsolidation in humans opens up declarative memory to the entrance of new information. Neurobiology of Learning and Memory, 93(1), 77-84.
20. Gershman, S. J., Schapiro, A. C., Hupbach, A., & Norman, K. A. (2013). Neural context reinstatement predicts memory misattribution. The Journal of Neuroscience, 33(20), 8590-8595.
21. Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95-112.
22. Hardwicke, T. E., Taqi, M., & Shanks, D. R. (2016). Postretrieval new learning does not reliably induce human memory updating via reconsolidation. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5206-5211.
23. Hupbach, A., Gomez, R., Hardt, O., & Nadel, L. (2007). Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learning & Memory, 14(1-2), 47-53.
24. Hupbach, A., Gomez, R., & Nadel, L. (2009). Episodic memory reconsolidation: updating or source confusion? Memory, 17(5), 502-510.
25. Hupbach, A., Gomez, R., & Nadel, L. (2011). Episodic memory updating: the role of context familiarity. Psychonomic Bulletin & Review, 18(4), 787-797.
26. Hupbach, A., Hardt, O., Gomez, R., & Nadel, L. (2008). The dynamics of memory: context-dependent updating. Learning & Memory, 15(8), 574-579.
27. Kim, M., & Lee, H. (2018). Memory Consolidation or Reconsolidation for the Treatment of Posttraumatic Stress Disorder. Korean Journal of Cognitive and Biological Psychology, 30(1), 1-14.
28. Klingmüller, A., Caplan, J. B., & Sommer, T. (2017). Intrusions in episodic memory: reconsolidation or interference? Learning & Memory, 24(5), 216-224.
29. Knight, R. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383(6597), 256-259.
30. Kopp, R., Bohdanecky, Z., & Jarvik, M. E. (1966). Long temporal gradient of retrograde amnesia for a well-discriminated stimulus. Science, 153(3743), 1547-1549.
31. Kumaran, D., & Maguire, E. A. (2006). An unexpected sequence of events: mismatch detection in the human hippocampus. PLoS Biology, 4(12), e424.
32. Kumaran, D., & Maguire, E. A. (2007). Which computational mechanisms operate in the hippocampus during novelty detection? Hippocampus, 17(9), 735-748.
33. Lee, J. L. C., Nader, K., & Schiller, D. (2017). An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 21(7), 531-545.
34. Lewis-Peacock, J. A., & Norman, K. A. (2014). Competition between items in working memory leads to forgetting. Nature Communications, 5, Article 5768.
35. Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron, 46(5), 703-713.
36. Loftus, E. F. (2005). Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learning & Memory, 12(4), 361-366.
37. Long, N. M., Lee, H., & Kuhl, B. A. (2016). Hippocampal Mismatch Signals Are Modulated by the Strength of Neural Predictions and Their Similarity to Outcomes. The Journal of Neuroscience, 36(50), 12677-12687.
38. Merlo, E., Milton, A. L., & Everitt, B. J. (2015). Enhancing cognition by affecting memory reconsolidation. Current Opinion in Behavioral Sciences, 4, 41-47.
39. Misanin, J. R., Miller, R. R., & Lewis, D. J. (1968). Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science, 160(3827), 554-555.
40. Monfils, M.-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science, 324(5929), 951–955.
41. Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. (2013). The &subjective & pupil old/new effect: Is the truth plain to see? International Journal of Psychophysiology, 89(1), 48-56.
42. Murray, J. G., Howie, C. A., & Donaldson, D. I. (2015). The neural mechanism underlying recollection is sensitive to the quality of episodic memory: Event related potentials reveal a some-or-none threshold. NeuroImage, 120, 298-308.
43. Nader, K., & Hardt, O. (2009). A single standard for memory: the case for reconsolidation. Nature Reviews Neuroscience, 10(3), 224-234.
44. Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722-726.
45. Nairne, J. S. (2002). The myth of the encoding-retrieval match. Memory, 10(5-6), 389-395.
46. Poirier, M., Nairne, J. S., Morin, C., Zimmermann, F. G. S., Koutmeridou, K., & Fowler, J. (2012). Memory as discrimination: a challenge to the encoding-retrieval match principle. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(1), 16-29.
47. Przybyslawski, J., Roullet, P., & Sara, S. J. (1999). Attenuation of emotional and nonemotional memories after their reactivation: role of β adrenergic receptors. The Journal of Neuroscience, 19(15), 6623-6628.
48. Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.
49. R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
50. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current theory and research (pp. 64-99). Appleton-Century-Crofts.
51. Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic Plasticity: How Memory Retrieval Drives Learning. Trends in Cognitive Sciences, 23(9), 726-742.
52. Roediger, H. L., 3rd, & Karpicke, J. D. (2006). The Power of Testing Memory: Basic Research and Implications for Educational Practice. Perspectives on Psychological Science, 1(3), 181-210.
53. Schiller, D., Monfils, M.-H., Raio, C. M., Johnson, D. C., LeDoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49-53.
54. Scully, I. D., Napper, L. E., & Hupbach, A. (2017). Does reactivation trigger episodic memory change? A meta-analysis. Neurobiology of Learning and Memory, 142, 99-107.
55. Sevenster, D., Beckers, T., & Kindt, M. (2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science, 339(6121), 830-833.
56. Sevenster, D., Beckers, T., & Kindt, M. (2014). Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. Learning & Memory, 21(11), 580-584.
57. Simon, K. C. N. S., Gómez, R. L., Nadel, L., & Scalf, P. E. (2017). Brain correlates of memory reconsolidation: A role for the TPJ. Neurobiology of Learning and Memory, 142, 154-161.
58. Sinclair, A. H., & Barense, M. D. (2018). Surprise and destabilize: prediction error influences episodic memory reconsolidation. Learning & Memory, 25(8), 369-381.
59. Sinclair, A. H., & Barense, M. D. (2019). Prediction Error and Memory Reactivation: How Incomplete Reminders Drive Reconsolidation. Trends in Neurosciences, 42(10), 727-739.
60. St Jacques, P. L., Olm, C., & Schacter, D. L. (2013). Neural mechanisms of reactivation-induced updating that enhance and distort memory. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19671-19678.
61. Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2016-2020.
62. Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281(5380), 1188-1191.
63. Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychological Bulletin, 121(3), 331-354.
64. Winkler, I., & Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. International Journal of Psychophysiology, 83(2), 132-143.