Current Issue

The Korean Journal of Cognitve & Biological Psychology - Vol. 34 , No. 2

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 34, No. 2, pp. 49-66
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Apr 2022
Received 18 Oct 2021 Revised 04 Feb 2022 Accepted 07 Feb 2022
DOI: https://doi.org/10.22172/cogbio.2022.34.2.002

다차원적 충동성 척도(UPPS-P)의 뇌 연결성-기반 타당화
곽세열1 ; 이다솜2 ; 조수연2 ; 최진영2,
1부산대학교 심리학과
2서울대학교 심리학과

Brain Connectivity-based Validation of Trait Impulsivity Scale
Seyul Kwak1 ; Dasom Lee2 ; Sooyun Cho2 ; Jeanyung Chey2,
1Department of Psychology, Pusan National University
2Department of Psychology, Seoul National University
Correspondence to : 최진영, 서울대학교 심리학과, (08826) 서울특별시 관악구 관악로 1 Tel: 02-880-6432, E-mail: jychey@snu.ac.kr, Fax: 02-877-6428


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

특질 충동성은 아동·청소년기의 주의력 결핍, 품행장애, 물질사용 등과 같은 문제를 설명하는 심리적 구성개념으로 알려져 있다. 뇌 영상 기법을 활용하여 청소년기 충동적 행동과 관련된 뇌 구조와 기능에 대한 신경과학적 상관물이 밝혀져 왔으나, 자기보고식 척도를 통해 측정되는 특질 충동성이 어떤 신경생물학적 기반을 반영하는지 알려진 바가 적다. 본 연구에서는 63명의 청소년을 대상으로 다차원적 충동성 척도(UPPS-P)와 휴지기 자기공명영상(resting state fMRI) 자료가 수집되었다. 정준상관분석을 사용하여 각 요인별 문항 반응이 충동성 뇌 연결망과 어떤 다변량적 관계를 맺는지 탐색했다. 분석 결과, 부정 긴급성, 감각추구, 긍정 긴급성 요인 별로 뇌 연결성과의 정준상관이 유의미했다. 특히, UPPS-P의 응답 패턴은 뉴로신스의 메타분석에 기반하여 정의된 충동성-관련 뇌 연결성과 관련이 있었던 반면, 충동성-관련 영역이 아닌 뇌 연결성에서는 이러한 정준상관이 관찰되지 않았다. 이러한 결과는 UPPS-P의 특정 문항 조합은 충동성-관련 뇌 연결성의 조합에 기반하고 있음을 나타내며, 자기보고 방법으로 측정되는 특질 충동성 척도의 일부 문항이 청소년의 뇌 기능 개인차를 반영하는 도구임을 시사한다.

Abstract

Trait impulsivity is known as a psychological construct that explains behavioral problems, including lack of attention, personality disorders, and substance use disorders in children and adolescents. While neurobiological mechanisms of adolescents’ impulsivity measured with behavioral lab tasks have been revealed using functional brain imaging techniques, little has been known whether trait impulsivity measured with self-reporting scales reflects a relevant neurobiological entity. In this study, multi-dimensional trait impulsivity scale (UPPS-P) and resting-state fMRI were acquired from 63 typically developing adolescents. We used a canonical correlation analysis (CCA) to examine whether trait impulsivity reflects the brain connectivities of impulsivity network by targeting the brain regions with the Neurosynth meta-analysis system. We found that the linear combination of UPPS-P item-level responses was associated with the linear combination of impulsivity-relevant brain connectivities in the factor items of negative urgency, sensation seeking, and positive urgency. On the contrary, the brain connectivities that were not based on the meta-analysis of impulsivity did not show a meaningful canonical correlation. These results suggest that specific questionnaires that compose the trait impulsivity scale are reflective of individual differences of adolescents’ neural circuitry of impulsiveness.


Keywords: trait impulsivity, UPPS-P, functional connectivity, canonical correlation, validation
키워드: 충동성, 휴지기 뇌 연결성, 정준상관관계, 타당화

Acknowledgments

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.


References
1. Arnsten, A. F., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 51(4), 356-367.
2. Baek, Y. (2010). Korean Version of the Perceived Stress Scale-10: Development of the Scale and Exploring the Effects of Perceived Stress on the Memory. Seoul National University.
3. Banca, P., Lange, I., Worbe, Y., Howell, N. A., Irvine, M., Harrison, N. A., ... & Voon, V. (2016). Reflection impulsivity in binge drinking: behavioural and volumetric correlates. Addiction biology, 21(2), 504-515.
4. Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 1505-1528.
5. Beauchaine, T. P., Zisner, A. R., & Sauder, C. L. (2017). Trait impulsivity and the externalizing spectrum. Annual review of clinical psychology, 13, 343-368.
6. Billieux, J., Van der Linden, M., & Rochat, L. (2008). The role of impulsivity in actual and problematic use of the mobile phone. Applied Cognitive Psychology, 22(9), 1195-1210.
7. Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological review, 111(4), 1061.
8. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.
9. Cao, F., Su, L., Liu, T. Q., & Gao, X. (2007). The relationship between impulsivity and Internet addiction in a sample of Chinese adolescents. European Psychiatry, 22(7), 466-471.
10. Casey, B. J. (2015). Beyond Simple Models of Self-Control to Circuit-Based Accounts of Adolescent Behavior. Annual Review of Psychology, 66, 295-319.
11. Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., ... & Moffitt, T. E. (2014). The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119-137.
12. Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., ... Milham, M. P. (2008). Cingulate-Precuneus Interactions: A New Locus of Dysfunction in Adult Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 63(3), 332-337.
13. Cho, M., & Kim, K. (1993). Dignostic Validity of the CES-D (Korean Version) in the Assessment of DSM-III-R Major Depression. Journal of Korean Neuropsychiatric Association, 32, 381-399.
14. Cohen, S., Kamarck, T., Mermelstein, R., Cohen, S., Kamarck, T. and Mermelstein, R., Cohen, S., Kamarck, T., ... Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385-396.
15. Coskunpinar, A., Dir, A. L., & Cyders, M. A. (2013). Multidimensionality in impulsivity and alcohol use: A meta analysis using the UPPS model of impulsivity. Alcoholism: Clinical and Experimental Research, 37(9), 1441-1450.
16. Cuthbert, B. N., & Kozak, M. J. (2013). Constructing constructs for psychopathology: The NIMH research domain criteria. Journal of Abnormal Psychology, 122(3), 928-937.
17. Cyders, M. A., & Coskunpinar, A. (2011). Measurement of constructs using self-report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity? Clinical Psychology Review, 31(6), 965-982.
18. Cyders, M. A., & Smith, G. T. (2007). Mood-based rash action and its components: Positive and negative urgency. Personality and Individual Differences, 43(3), 839-850.
19. Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80(2), 203-211.
20. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22(3), 491-569.
21. DeShong, H. L., & Kurtz, J. E. (2013). Four Factors of Impulsivity Differentiate Antisocial and Borderline Personality Disorders. Journal of Personality Disorders, 27(2), 144-156.
22. DeYoung, C. G., & Gray, J. R. (2009). Personality neuroscience: Explaining individual differences in affect, behavior, and cognition. In P.J. Corr & G. Matthews (Eds.), The Cambridge handbook of personality psychology (pp. 323-346). New York: Cambridge University Press.
23. Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99-105.
24. Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., ... & Schatzberg, A. F. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature medicine, 23(1), 28.
25. Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45(3), 259-268.
26. Eisenberg, I. W., Bissett, P. G., Enkavi, A. Z., Li, J., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Uncovering the structure of self-regulation through data-driven ontology discovery. Nature communications, 10(1), 1-13.
27. Feng, C., Yuan, J., Geng, H., Gu, R., Zhou, H., Wu, X., & Luo, Y. (2018). Individualized prediction of trait narcissism from whole‐brain resting‐state functional connectivity. Human brain mapping, 39(9), 3701-3712.
28. Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage, 1-12.
29. Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 1664-1671.
30. Fox, M. D., & Greicius, M. D. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.
31. Fried, E. I. (2017). What are psychological constructs? On the nature and statistical modelling of emotions, intelligence, personality traits and mental disorders. Health psychology review, 11(2), 130-134.
32. Henríquez-Henríquez, M. P., Billeke, P., Henríquez, H., Zamorano, F. J., Rothhammer, F., & Aboitiz, F. (2015). Intra-individual response variability assessed by ex-Gaussian analysis may be a new endophenotype for attention-deficit/hyperactivity disorder. Frontiers in Psychiatry, 6, 1-8.
33. Hsu, W. T., Rosenberg, M. D., Scheinost, D., Constable, R. T., & Chun, M. M. (2018). Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals. Social Cognitive and Affective Neuroscience, 13, 224-232.
34. Hughes, D. J. (2017). Psychometric validity: Establishing the accuracy and appropriateness of psychometric measures. The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development.
35. Jeong, H., Kim, J., & Kang, E. (2017). Behavioral approach system (BAS) sensitivity andfunctional brain networks during rest: graph-theory analysis. The Korean Journal of Cognitive and Biological Psychology, 29(2), 105-125.
36. Jiang, R., Calhoun, V. D., Zuo, N., Lin, D., Li, J., Fan, L., ... Sui, J. (2018). Connectome-based individualized prediction of temperament trait scores. NeuroImage, 183, 366-374.
37. Kim, B., & Kwon, S. (2017). Behavioral Activation System Sensitivity and Functional Impairment in Undergraduates with Hypomanic Personality: Moderating Role of Impulsivity. Korean Journal of Clinical Psychology, 36(2), 143-153.
38. Kim, J., & Kang, E. (2017). Impaired resting-state functional connectivity of frontostriatal regions in internet game over-use. The Korean Journal of Cognitive and Biological Psychology, 29(1), 63-80.
39. Kim, J., Kim, H., Cho, H., Jeong, H., & Kang, E. (2017). Neuroanatomical Correlates of Personality Traits for Internet Gaming Overuse: a VBM study. Korean Journal of Psychology: General, 36(1), 109-135.
40. King, K. M., Patock-Peckham, J. A., Dager, A. D., Thimm, K., & Gates, J. R. (2014). On the Mismeasurement of Impulsivity: Trait, Behavioral, and Neural Models in Alcohol Research among Adolescents and Young Adults. Current Addiction Reports, 1(1), 19-32.
41. Kragel, P. A., Knodt, A. R., Hariri, A. R., & LaBar, K. S. (2016). Decoding spontaneous emotional states in the human brain. PLoS biology, 14(9), e2000106.
42. Kragel, P. A., Koban, L., Barrett, L. F., & Wager, T. D. (2018). Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging. Neuron, 99(2), 257-273.
43. Lenartowicz, A., Kalar, D. J., Congdon, E., Poldrack, A., Poldrack, R. A., & Poldrack, A. (2010). Towards an Ontology of Cognitive Control. Topics in Cognitive Science, 2(4), 678-692.
44. Lim, S., & Lee, Y. (2014). A Test of the Criterion Validity of the Korean UPPS-P Impulsive Behavior Scale Among College Students. Korean Journal of Clinical Psychology, 33(1), 51-71.
45. Lim, S., & Lee, Y. (2016). A Korean Validation of the UPPS-P Impulsive Behavior Scale in College Students.. Korean Journal of Heath Psychology, 21(4), 791-814.
46. Lim, S., & Lee, Y. (2017). The Effects of Negative Urgency, NegativeAffect, and Emotion Regulation Difficultieson Self-Harm Behaviorin Borderline Personality Disorder. The Korean Journal of Health Psychology, 22(3), 565-585.
47. Marek, S., Siegel, J. S., Gordon, E. M., Raut, R. V., Gratton, C., Newbold, D. J., ... Dosenbach, N. U. F. (2018). Spatial and Temporal Organization of the Individual Human Cerebellum. Neuron, 100(4), 977-993.e7.
48. Markett, S., Montag, C., & Reuter, M. (2018). Network neuroscience and personality. Personality Neuroscience, 1.
49. Meng, Y., Deng, W., Wang, H., Guo, W., & Li, T. (2015). The prefrontal dysfunction in individuals with Internet gaming disorder: a meta‐analysis of functional magnetic resonance imaging studies. Addiction biology, 20(4), 799-808.
50. Miller, J., Flory, K., Lynam, D., & Leukefeld, C. (2003). A test of the four-factor model of impulsivity-related traits. Personality and Individual Differences, 34(8), 1403-1418.
51. Moreno-lópez, L., Catena, A., Fernández-serrano, M. J., Delgado-rico, E., Stamatakis, E. A., Pérez-garcía, M., & Verdejo-garcía, A. (2012). Trait impulsivity and prefrontal gray matter reductions in cocaine dependent individuals. Drug and Alcohol Dependence, 125(3), 208-214.
52. Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z., & Borsook, D. (2014). The cerebellum and addiction: Insights gained from neuroimaging research. Addiction Biology, 19(3), 317-331.
53. Muhlert, N., & Lawrence, A. D. (2015). Brain structure correlates of emotion-based rash impulsivity. Neuroimage, 115, 138-146.
54. Nostro, A. D., Müller, V. I., Varikuti, D. P., Pläschke, R. N., Hoffstaedter, F., Langner, R., ... Eickhoff, S. B. (2018). Predicting personality from network-based resting-state functional connectivity. Brain Structure and Function, 223(6), 2699-2719.
55. Petrican, R., & Grady, C. L. (2017). Contextual and Developmental Differences in the Neural Architecture of Cognitive Control. Journal of Neuroscience, 37(32), 7711-7726.
56. Perry, A., Wen, W., Kochan, N. A., Thalamuthu, A., Sachdev, P. S., & Breakspear, M. (2017). The independent influences of age and education on functional brain networks and cognition in healthy older adults. Human Brain Mapping, 38(10), 5094-5114.
57. Plichta, M. M., & Scheres, A. (2014). Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neuroscience & Biobehavioral Reviews, 38, 125-134.
58. Poldrack, R. A., & Yarkoni, T. (2016). From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure. Annual Review of Psychology, 67, 1-26.
59. Rice, F., Riglin, L., Thapar, A. K., Heron, J., Anney, R., O’Donovan, M. C., & Thapar, A. (2018). Characterizing developmental trajectories and the role of neuropsychiatric genetic risk variants in early-onset depression. JAMA psychiatry, 76(3), 306-313.
60. Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 81-91.
61. Rochat, L., Billieux, J., Gagnon, J., & Linden, M. Van Der. (2018). A multifactorial and integrative approach to impulsivity in neuropsychology: insights from the UPPS model of impulsivity. Journal of Clinical and Experimental Neuropsychology, 40(1), 45-61.
62. Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T., & Chun, M. M. (2017). Characterizing attention with predictive network models. Trends in cognitive sciences, 21(4), 290-302.
63. Rudolph, M. D., Miranda-Domínguez, O., Cohen, A. O., Breiner, K., Steinberg, L., Bonnie, R. J., ... Fair, D. A. (2017). At risk of being risky: The relationship between “brain age” under emotional states and risk preference. Developmental Cognitive Neuroscience, 24, 93-106.
64. Seidman, L. J., Valera, E. M., & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1263-1272.
65. Sharma, L., Markon, K. E., & Clark, L. A. (2014). Toward a theory of distinct types of “impulsive” behaviors: A meta-analysis of self-report and behavioral measures. Psychological Bulletin, 140(2), 374-408.
66. Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage, 82, 403-415.
67. Shin K., Kim, D., & Jeong, Y. (2011). Development of Korean smartphone addiction proneness scale for youth and adults. National Information Society Agency.
68. Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., J Behrens, T. E., Glasser, M. F., ... Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11), 1-7.
69. Somerville, L. H., Hare, T. A., & Casey, B. J. (2011). Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents. Journal of Cognitive Neuroscience, 23, 2123-2134.
70. Strauss, M. E., & Smith, G. T. (2009). Construct Validity: Advances in Theory and Methodology. Annual Review of Clinical Psychology, 5, 1-25.
71. Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216-220.
72. Wang, H. T., Smallwood, J., Mourao-Miranda, J., Xia, C. H., Satterthwaite, T. D., Bassett, D. S., & Bzdok, D. (2020). Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. NeuroImage, 216, 116745.
73. Whelan, R., Watts, R., Orr, C. a., Althoff, R. R., Artiges, E., Banaschewski, T., ... Ziesch., V. (2014). Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature, 512(7513), 185-189.
74. Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669-689.
75. Whiteside, S. P., Lynam, D. R., Miller, J. D., & Reynolds, S. K. (2005). Validation of the UPPS impulsive behaviour scale: A four-factor model of impulsivity. European Journal of Personality, 19(7), 559-574.
76. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2, 125-141.
77. Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience Reviews, 20, 365-377.
78. Xia, C. H., Ma, Z., Ciric, R., Gu, S., Betzel, R. F., Kaczkurkin, A. N., ... Satterthwaite, T. D. (2018). Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 9, 3003.
79. Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81-88.
80. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665.