Current Issue

The Korean Journal of Cognitve & Biological Psychology - Vol. 33, No. 3

[ Brief Report ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 33, No. 3, pp.191-200
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Jul 2021
Received 17 May 2021 Revised 14 Jul 2021 Accepted 19 Jul 2021
DOI: https://doi.org/10.22172/cogbio.2021.33.3.006

시각적 운동자극의 망막 상 운동궤적과 지각된 운동궤적이 운동시간 추정에 미치는 영향
박종진1 ; 이형철1, ; 김신우1
1광운대학교

The Effect of Retinal and Perceived Motion Trajectory of Visual Motion Stimulus on Estimated Duration of Motion
Jong-Jin Park1 ; Hyung-Chul O. Li1, ; ShinWoo Kim1
1Kwangwoon University
Correspondence to : 이형철, (01891) 서울 노원구 광운로 27-38, E-mail: hyung@kw.ac.kr


ⓒ The Korean Society for Cognitive and Biological Psychology
Funding Information ▼

초록

1초 내외의 제시시간을 가지는 운동자극의 제시시간 지각이 그 자극의 공간특성에 의하여 왜곡되는 현상은 잘 알려져 있다. 그러나 깊이단서를 사용하여 시간 측정자극 한 쌍의 지각된 공간특성을 일치시키면 시간지각 왜곡이 사라지는데, 이 현상을 시간항등성이라고 부른다. 본 연구는 시간항등성이 크기항등성의 결과로 나타나는 현상이라는 대안적 가설을 검증하는 것이다. 이 연구는 뮐러-라이어 착시를 사용하여 표준자극과 시험자극의 망막 상 운동궤적 일치 조건과 지각된 운동궤적 일치 조건에서 운동자극을 제시하고 그 자극의 지각된 제시시간을 측정하였다. 그 결과 지각된 운동궤적이 일치하는 조건과 망막 상 운동궤적이 일치하는 조건에서 모두 표준자극 대비 시험자극의 지각된 운동궤적이 망막 상 운동궤적보다 짧을 경우 지각된 제시시간이 과소추정 되었고 긴 경우 과대추정 되었다. 즉, 시간지각 측정을 위한 두 자극의 지각된 공간특성이 일치해도 시간지각 왜곡이 관찰되는 경우가 있다. 이 발견은 시간항등성이 크기항등성의 결과일 것이라는 대안적 가설에 대한 한 가지 반례이다.

Abstract

It is well known that estimated duration on moving stimulus which is presented about one second might be distorted depending on its spatial features. The distortion disappeared, however, when spatial features of a pair of measuring stimulus are perceived as the same with depth cue. This phenomenon is called time constancy. The aim of the current research is to examine the alternative hypothesis that time constancy is a consequence of size constancy. In the study, Mueller-Lyer illusion was used to measure perceived duration on a pair of stimulus which has the same retinal or perceived motion trajectories. The result shows that estimated duration of the test stimulus was overestimated when the length of perceived trajectories was longer than retinal trajectories compared to that of the standard stimulus and underestimated when the length of perceived trajectory was smaller than retinal trajectory compared to that of the standard stimulus. This implies that distortion in duration perception could be caused even when motion trajectory was perceived the same. This finding is a counterexample against the alternative hypothesis that time constancy might be a consequence of size constancy.


Keywords: duration Perception, time constancy, size constancy, perceived Trajectory
키워드: 지속시간 지각, 시간항등성, 크기항등성, 지각된 운동궤적

Acknowledgments

이 논문은 2018년 대한민국 교육부와 한국연구재단의 지원(NRF-2018S1A5B5A07073758)과 2020년도 광운대학교 교내연구비(이형철)의 지원을 받아 수행된 연구임.


References
1. Abbe, M. (1936). The spatial effect upon the perception of time. Japanese Journal of Experimental Psychology, 3, 1–52.
2. Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10(4), 433-436.
3. Buonomano, D. V. (2000). Decoding temporal information: a model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129-1141.
4. Durstewitz, D. (2003). Self-organizing neural integrator predicts interval times through climbing activity. Journal of Neuroscience, 23(12), 5342-5353.
5. Geisler, W. S. (2011). Contributions of ideal observer theory to vision research. Vision research, 51(7), 771-781.
6. Goel, A., &Buonomano, D. V. (2014). Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments. Philosophical transactions of the Royal Society B: Biological sciences, 369(1637), 20120460.
7. Gorea, A., & Hau, J. (2013). Time in Perspective. Psychological science, 24(8), 1477-1486.
8. Gorea, A., & Kim, J. (2015) Time dilates more with apparent than with physical speed. Journal of Vision, 15(1):7, 1–11.
9. Haß, J., Blaschke, S., Rammsayer, T., & Herrmann, J. M. (2008). A neurocomputational model for optimal temporal processing. Journal of computational neuroscience, 25(3), 449-464.
10. Hass, J., & Durstewitz, D. (2014). Neurocomputational models of time perception. Advanced Experimental Medicine and Biology, 298, 49-71.
11. Hass, J., & Durstewitz, D. (2016). Time at the center, or time at the side? Assessing current models of time perception. Current Opinion in Behavioral Sciences, 8, 238-244.
12. Kanai, R., Paffen, C. L. E., Hogendoorn, H., & Verstraten, F. A. J. (2006). Time dilation in dynamic visual display. Journal of Vision, 6(12), 8.
13. Kaneko, S., & Murakami, I. (2009). Perceived duration of visual motion increases with speed. Journal of Vision, 9(7), 14.
14. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36(ECVP Abstract Suppl), 14.
15. Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision research, 39(16), 2729-2737.
16. Lee, W.S., Kim, S.W., Li, H.C. O. (2018). Effects of object size and viewing distance on duration perception. Science of emotion and sensibility, 21(4), 91-102.
17. Lisi, M., & Gorea, A. (2016). Time constancy in human perception. Journal of Vision, 16(14), 3.
18. Linares, D., & Gorea, A. (2015). Temporal frequency of events rather than speed dilates perceived duration of moving objects. Scientific reports, 5, 8825.
19. Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive brain research, 21(2), 139-170.
20. Pelli, D. G., & Vision, S. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision, 10, 437-442.
21. Prins, N & Kingdom, F. A. A. (2018). Applying the Model-Comparison Approach to Test Specific Research Hypotheses in Psychophysical Research Using the Palamedes Toolbox. Frontiers in Psychology, 9, 1250.
22. Purves, D., Morgenstern, Y., & Wojtach, W. T. (2015). Will understanding vision require a wholly empirical paradigm?. Frontiers in psychology, 6, 1072.
23. Purves, D., Wojtach, W. T., & Lotto, R. B. (2011). Understanding vision in wholly empirical terms. Proceedings of the National Academy of Sciences, 108 Suppl 3(Suppl 3), 15588-15595.
24. Romo, R., Hernandez, A., & Zainos, A. (2004). Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron, 41(1), 165-173.
25. Sperandio, I., & Chouinard, P. A. (2015). The mechanisms of size constancy. Multisensory research, 28(3-4), 253-283.