Current Issue

The Korean Journal of Cognitve & Biological Psychology - Vol. 33, No. 3

[ Original Article ]
The Korean Journal of Cognitve & Biological Psychology - Vol. 33, No. 3, pp.133-141
Abbreviation: KCBPA
ISSN: 1226-9654 (Print)
Print publication date 30 Jul 2021
Received 03 May 2021 Revised 09 Jun 2021 Accepted 10 Jun 2021
DOI: https://doi.org/10.22172/cogbio.2021.33.3.002

P300 숨긴정보검사에 사용되는 부트스트랩 방법의 표본 크기
엄진섭1, ; 전하정2
1충북대학교
2충남대학교

Sample size of bootstrap method used in P300 concealed information test
Jin-Sup Eom1, ; Hajung Jeon2
1Chungbuk National University
2Chungnam National University
Correspondence to : 엄진섭, 충북대학교 심리학과, (28644) 충북 청주시 서원구 충대로 1 E-mail: jseom2003@hanmail.net


ⓒ The Korean Society for Cognitive and Biological Psychology

초록

P300 숨긴정보검사에서는 관련자극에 대한 P300 진폭이 무관련자극에 대한 P300 진폭보다 더 큰지를 평가한다. 그런데 무관련자극의 시행수가 관련자극의 시행수보다 훨씬 더 크기 때문에 관련자극에 대한 P300 진폭이 과대추정된다는 문제점이 있다. Rosenfeld 등(2008)은 이 문제에 대처하기 위하여 무관련자극의 부트스트랩 표본크기를 관련자극의 표본크기로 축소하여 사용하였다. 일반적으로 부트스트랩 표본크기는 원래의 표본크기와 동일해야만 하며, 부트스트랩 표본크기가 원래의 표본크기보다 작으면 1종 오류율이 유의수준보다 작아지는 문제가 발생한다. 본 연구의 목적은 몬테카를로 연구를 통하여 무관련자극의 부트스트랩 표본크기를 축소하는 수정된 부트스트랩 방법의 1종 오류율을 평가하고, 이러한 오류가 교정될 수 있는지 확인하는 것이다. 실험 1의 결과, 수정된 부트스트랩 방법의 1종 오류율은 약 .073으로 유의수준 .10보다 낮았다. 표준오차를 이용하여 유의수준을 교정한 부트스트랩 방법의 1종 오류율은 약 .140으로 유의수준 .10보다 더 높게 나타나, 수정된 부트스트랩 방법의 오류가 교정되지 않았다. 실험 2에서 수정된 부트스트랩 방법의 오류가 교정되지 않는 이유를 평가하기 위하여 숫자를 이용한 몬테카를로 연구를 수행하였다. 연구결과, 수정된 부트스트랩 방법의 1종 오류율은 약 .054로 유의수준 .10보다 작았으며, 교정된 부트스트랩 방법의 1종 오류율은 약 .10으로 유의수준과 동일하였다. 따라서 수정된 부트스트랩 방법의 오류가 교정되지 않는 이유는 뇌파자료의 특수성 때문인 것으로 나타났다. 이러한 오류를 극복하는 방법에 대해서 논의하였다.

Abstract

It is evaluated whether the P300 amplitude for the probe is greater than the P300 amplitude for the irrelevant in the P300 concealed information test. However, there is a problem that the P300 amplitude for the probe is overestimated because the number of trials of the irrelevant is much larger than that of the probe. Rosenfeld et al. (2008) attempted to solve this problem by reducing the bootstrap sample size of the irrelevant to the sample size of the probe. In general, the bootstrap sample size must be the same as the original sample size and the type 1 error rate becomes smaller than the significance level if the bootstrap sample size is smaller than the original sample size. The purpose of this study is to evaluate the type 1 error rate of the modified bootstrap method that reduces the bootstrap sample size of irrelevant through Monte Carlo studies and to check whether this error can be corrected. As a result of experiment 1, the type 1 error rate of the modified bootstrap method was about .073, which was lower than the significance level .10. The type 1 error rate of the adjusted bootstrap method with corrected the significance level using the standard error was about .140 which was higher than the significance level .10. Consequently, the error of the modified bootstrap method was not corrected. In order to investigate the reason why the error of the modified bootstrap method was not corrected, a Monte Carlo study using numbers was performed. In the results of experiment 2, the type 1 error rate of the modified bootstrap method was about .054, which was less than the significance level .10, and that of the adjusted bootstrap method was about .10, which was the same as the significance level. It was found that the reason why the error of the modified bootstrap method is not corrected was due to the specificity of the EEG data. The reasons why these errors are not corrected and how to solve these errors were discussed.


Keywords: P300, concealed information test, bootstrap, sample size
키워드: 숨긴정보검사, 부트스트랩, 표본 크기

References
1. Ahad, N. A., Abdullah, S., & Lai, C. H. (2012). Relative power performance of t-test and bootstrap procedure for two-sample. Pertanika Journal of Science & Technology, 20, 43-52.
2. Arcones, M. A. (2003). On the asymptotic accuracy of the bootstrap under arbitrary resampling size. Annals of the Institute of Statistical Mathematics, 55, 563-583.
3. Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case. The Annals of Statistics, 15, 724-731.
4. Bickel, P. J., Götze, F., & van Zwet, W. R. (2012). Resampling fewer than n observations: gains, losses, and remedies for losses. In Selected works of Willem van Zwet (pp. 267-297). Springer, New York, NY.
5. Cutmore, T. R., Djakovic, T., Kebbell, M. R., & Shum, D. H. (2009). An object cue is more effective than a word in ERP-based detection of deception. International Journal of Psychophysiology, 71, 185-192.
6. Davydova, E., Rosenfeld, J. P., & Labkovsky, E. (2020). Necessity of the target discrimination in the P300 based complex trial protocol test for concealed information. Psychophysiology, 57, e13548.
7. Dwivedi, A. K., Mallawaarachchi, I., & Alvarado, L. A. (2017). Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Statistics in medicine, 36, 2187-2205.
8. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics. 7, 1-26.
9. Eom, J. S., Jeon, H., & Sohn, J. H. (2018). The false positive rate of P300-based concealed information test. The Korean Journal of Cognitive and biological Psychology, 30, 241-259.
10. Ham, K. Kim, K., Jeong, H., & Kim, Y. (2020). Application of ERP-based memory identification using bootstrap technique for eyewitness: Comparison of recognition protocol and concealed information task protocol. The Korean Journal of Cognitive and biological Psychology, 32, 125-136.
11. Haverkamp, N., & Beauducel, A. (2017). Violation of the sphericity assumption and its effect on type-I error rates in repeated measures ANOVA and multi-level linear models (MLM). Frontiers in psychology, 8, 1841.
12. Hernández, W., Calderón-Córdova, C., González-Posada, V., Parra-Cerrada, Á., Jiménez, J. L., González-Garcia, J. E., ... & Sergiyenko, O. Y. (2017). Bootstrap-based frequency estimation method. Measurement, 95, 193-200.
13. Jeon, H., Sohn, J. H., & Eom, J. S. (2020). The accuracy of permutation test in P300-based concealed information test. The Korean Journal of Cognitive and biological Psychology, 32, 69-83.
14. klein Selle, N., Gueta, C., Harpaz, Y., Deouell, L. Y., & Ben-Shakhar, G. (2021). Brain-based concealed memory detection is driven mainly by orientation to salient items. Cortex, 136, 41-55.
15. Konietschke, F., & Pauly, M. (2014). Bootstrapping and permuting paired t-test type statistics. Statistics and Computing, 24, 283-296.
16. Lu, Y., Rosenfeld, J. P., Deng, X., Zhang, E., Zheng, H., Yan, G., ... & Hayat, S. Z. (2018). Inferior detection of information from collaborative versus individual crimes based on a P300 Concealed Information Test. Psychophysiology, 55, e13021.
17. Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
18. Lukács, G., Weiss, B., Dalos, V. D., Kilencz, T., Tudja, S., & Csifcsák, G. (2016). The first independent study on the complex trial protocol version of the P300-based concealed information test: Corroboration of previous findings and highlights on vulnerabilities. International Journal of Psychophysiology, 110, 56-65.
19. Olson, J., Rosenfeld, J. P., & Perrault, E. (2019). Deleterious effects of probe related versus irrelevant targets on the “CIT effect” in the P300 and RT based three stimulus protocol for detection of concealed information. Psychophysiology, 56, e13459.
20. Park, K. (2003). Analysis of variance and regression analysis. Hakjisa.
21. Rosenfeld, J. P. (2011). P300 in detecting concealed information. In B. Verschuere, G. Ben-Shakhar, & E. Meijer (Eds.), Memory detection: Theory and application of the concealed information test (pp. 63-89). Cambridge, UK: Cambridge University Press.
22. Rosenfeld, J. P., Labkovsky, E., Winogard, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The complex trial protocol(CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45, 906-919.
23. Rosenfeld, J. P., Shue, E., & Singer, E. (2007). Single versus multiple probe blocks of P300-based concealed information tests for self-referring versus incidentally obtained information. Biological psychology, 74, 396-404.
24. Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300 based tests of detection of concealed information. Psychophysiology, 41, 205-219.
25. Ross, S. (2010). Introductory Statistics. Elsevier Science.
26. Shao, J. (1994). Bootstrap sample size in nonregular cases. Proceedings of the American Mathematical Society, 122, 1251-1262.
27. Song, I., Kim, H., Lee, K. E., Chang, E., & Kim, H. T. (2018). The comparison of Bootstrapping analyses in P300-CIT. The Korean Journal of Forensic Psychology, 9, 75-99.
28. Yeung, N., Bogacz, R., Holroyd, C. B., & Cohen, J. D. (2004). Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology, 41(6), 822-832.
29. Zoumpoulaki, A., Alsufyani, A., & Bowman, H. (2015). Resampling the peak, some dos and don'ts. Psychophysiology, 52, 444-448.